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SUMMARY 
This paper presents a numerical method for fluid flow in complex three-dimensional geometries using a 
body-fitted co-ordinate system. A new second-order-accurate scheme for the cross-derivative terms is 
proposed to describe the non-orthogonal components, allowing parts of these terms to be treated implicitly 
without increasing the number of computational molecules. The physical tangential velocity components 
resulting from the velocity expansion in the unit tangent vector basis are used as dependent variables in 
the momentum equations. A coupled equation solver is used in place of the complicated pressure correction 
equation associated with grid non-orthogonality. The co-ordinate-invariant conservation equations and 
the physical geometric quantities of control cells are used directly to formulate the numerical scheme, 
without reference to the co-ordinate derivatives of transformation. Several two- and three-dimensional 
laminar flows are computed and compared with other numerical, experimental and analytical results to 
validate the solution method. Good agreement is obtained in all cases. 
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1. INTRODUCTION 

Considerable progress has been made in recent years in the application of computational fluid 
dynamics to engineering problems. Efficient methods have been developed to compute fluid flow 
and heat transfer in problems with regular geometries where the domain boundaries fall along 
the lines of an analytic orthogonal co-ordinate system. However, many practical problems 
require geometrically complex computational domains. One such example is the film cooling of 
turbine blades.' In order to simulate this complex cooling process, the computational region 
should include not only the curved turbine blade surface but also the cooling orifices within the 
blade. 

For problems with complex geometries, finite element methods appear to be the natural choice 
owing to their intrinsic geometric flexibility. Finite volume/difference methods, however, are well 
established in computational fluid dynamics and an alternative approach would be to use 
these methods with an appropriate body-fitted co-ordinate ~ y s t e m . ~ - ' ~  Such methods can be 
developed on the basis of well-established solution algorithms and numerical codes for the 
regular geometries. 
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Curvilinear co-ordinates with orthogonal and non-orthogonal grids have been extensively 
used for fluid flow in complex geometries. The governing equations are considerably simpler in 
orthogonal co-ordinates; however, these methods have serious geometric limitations. Orthogonal 
grids are difficult to generate, especially in three dimensions. For complex three-dimensional 
domains, non-orthogonal grids are often necessary because they provide greater flexibility in 
the distribution of the grid points. 

The use of a curvilinear co-ordinate system can entail a number of difficulties which 
have to be addressed. Some of these are described in the following. Most grid generation 
techniques provide discrete grid points rather than the analytic functions of transformation. 
In such cases the co-ordinate derivatives of transformation or the covariant base vectors 
ai = dy/d(,, dz/d(,)  are usually computed approximately and other metric quantities such 
as contravariant base vectors and the Jacobian determinant are then evaluated from these 
co-ordinate derivatives. The definition and calculation of these derivatives, however, become 
ambiguous when a non-smooth grid is used. The procedure used to approximate these quantities 
is critical and may lead to significant numerical errors or even unrealistic solutions.” 

Secondly, significant deterioration of the convergence rate of some of the available iterative 
solution procedures can occur with a non-orthogonal grid,l3*I4 especially when the grid 
is highly non-orthogonal. This is partially due to the explicit treatment of the large non- 
orthogonal diffusion terms, which can be described analytically by cross-derivative terms such 
as (d/d(2)(rg1’du/d(1) and (d/d(3)(rg13du/i3(,) in the momentum equations. 

The choice of dependent variables in the momentum equations also requires careful considera- 
tion. When Cartesian velocity components are used as dependent  variable^,^^^^' ’ the conserva- 
tion of momentum is considered along fixed directions everywhere in the field and no curvature 
terms appear in the momentum equations. The applicability and performance of the scheme, 
however, depend on the orientation of the computational grid relative to the reference Cartesian 
co-ordinate system. In the staggered approach, zero convective fluxes across the control volume 
faces may occur when the grid turns by 90” and one Cartesian velocity component is stored on 
each cell face. Grid-oriented velocities can be used as dependent variables’-’ in order to 
eliminate this difficulty. The use of grid-oriented velocity components, however, leads to 
grid-sensitive curvature terms in the momentum equations. Such terms depend on the second 
derivative of grid co-ordinates and thus are difficult to discretize in a conservative manner, 
possibly leading to severe inacc~rac ie s .~ .~  

Most of the work reported in the current literature uses a variant of the SIMPLE algorithm’ 
to couple the pressure and velocity fields. The extension of this technique to non-orthogonal 
grids results in a very complex pressure correction equation, especially for three-dimensional 
cases. 

The present study proposes a method for the computation of flows in complex geometries 
that attempts to solve some of the problems described above. The method addresses the 
requirements of simulating complex three-dimensional problems such as the film cooling of 
turbine blades.’ Efforts are made to achieve greater flexibility in grid design using significantly 
non-orthogonal and moderately non-smooth grids. To solve the problem related to the 
non-orthogonal grid, a new second-order-accurate numerical scheme is proposed to describe 
the cross-derivative terms. This scheme allows implicit treatment for part of the non-orthogonal 
terms without increasing the size of the computational molecules. To avoid inaccurate discretiza- 
tion for a non-smooth grid, the physical geometric quantities (volumes, surface area vectors, 
etc.) are calculated directly and used to formulate the numerical schemes. These geometric 
quantities are calculated in such a way as to satisfy the geometric conservation laws described 
by Vinokur.” When the divergence theorem is used over a control cell, the conservation equation 
can be expressed accurately for an arbitrary grid using these geometric quantities. Such an 
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approach yields an overall convervative approximation for any grid and provides a better 
physical understanding of the resulting formulation. 

The proposed method uses the physical tangential velocity components as dependent variables 
in the momentum equations. These variables are the contravariant velocity unknowns and the 
volume flow rates across cell faces with appropriate normalization. Similarly to other grid- 
oriented velocity unknowns, the choice of such dependent variables gives rise to additional 
curvature terms. These terms can be expressed by Christoffel symbols using tensor notation’ 
and discretized directly.’.* In the present study a different approach is followed which avoids 
the explicit discretization of the second-order co-ordinate derivatives. A coupled equation solver 
combined with a staggered grid approach is used to solve the momentum and continuity 
equations directly, eliminating the need for a complex pressure correction equation. 

The proposed method is described by first presenting the derivation of the discretized general 
governing equation and the numerical scheme for the non-orthogonal terms. This scheme is 
then proven to be second-order-accurate. Next, the treatment of the momentum equations and 
curvature terms using the tangential velocity components as the dependent variables is described, 
followed by a description of the overall coupled solution procedure in the curvilinear co-ordinate 
system. Finally, four computational examples are presented to demonstrate the capabilities of 
the method. 

2. NUMERICAL FORMULATION 

This section describes the discretization of a general scalar governing equation which forms the 
basis for the discretization of the momentum equations. The geometric quantities used in our 
discretization are described first. The divergence theorem is then used to integrate the governing 
equation. Finally, the new discretization method for the non-orthogonal terms is described and 
the second-order accuracy is proven. 

2. I .  Geometric quantities 

The physical geometric quantities for the control cells are used directly. A uniform grid with 
mesh size A t i  = 1 is assumed in the transformed computational domain. 

The geometric quantities used in the present study are illustrated in Figure 1. The unit tangent 
vectors ei ( i  = 1,2,  3) are calculated at the centres of the control volume surfaces and are 

Figure 1 .  Illustration of the physical geometric quantities for a control cell 
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locally parallel to the co-ordinate lines t i .  These tangent vectors correspond to the normalized 
covariant base vectors a, in the literature. The surface area vectors S' (i = 1,2,3) are also defined 
at the same points as ei and are normal to the control volume surfaces, with magnitude IS'I 
equal to the corresponding surface area. The volume of the control cell is denoted by I/. 

The quantities e,, S' and I/ are the basic grid quantities and are calculated directly using 
discrete grid points. For convenience of formulation, two additional quantities are defined from 
the above geometric quantities. The non-orthogonal angles ai are defined as the angles between 
the surface area vectors S' and the tangential vectors e i .  These angles are a measure of the degree 
of grid non-orthogonality; for an orthogonal grid these angles are zero. The surface area vectors 
S' are rescaled and denoted as ei = S'/Js'J cos cli. 

2.2. Culculation of the geometric quantities 

In general, the geometric quantities have to be evaluated from discrete grid points. The unit 
tangent vectors ei are calculated by second-order-accurate averaging (using the centre points of 
two neighbouring control cells). 

The faces of a control cell are generally surfaces rather than planes, as illustrated in Figure 2. 
In fact, i t  is not always possible to fit a plane through four points. The surface area vectors and 
volume of a control cell can be approximated directly by various formulae. 

To approximate the surface area vectors and volume of a cell, the following formulae for a 
triangle and a pyramid are used. A properly oriented surface area vector for a triangular face 
with vertices r , ,  r2 and r 3 ,  is given by 

while the volume for a pyramid with vertices r l ,  r 2 ,  r3 and r, is given by 

1 c[(r, - r I )  x (r3 - rl)]  (r, - r l )  = $3 - (r4 - TI). 

Using equations (1) and (2), we can employ various averaging processes to calculate the geometric 
quantities for an arbitrary cell with straight line edges. Each polygonal face is divided into plane 
triangular faces and the total volume is treated as a sum of tetrahedra. In order to obtain an 
accurate discretization, the geometric quantities are calculated according to the geometric 

Figure 2. A general control volume. Nodes to the north. south, east, west, top and bottom are represented by N,  S ,  E, 
W, T and €3 respectively. Lowercase letters denote control volume surfaces 
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conservation laws described in Reference 15 and the following formulae for surface area vectors 
and volume are used: 

sh = (r6 - r l )  (r3 - r4)/2, (3) 

(4) V = f(si + Sf + S,") * (r8 - rl), 

where the subscripts 'w' 's' and 'b' indicate locations west, south and bottom respectively 
(Figure 1) of the vectors. From the two basic vectors S and ei the quantities cos xi and ei can be 
calculated. 

Noting that rz - r,, r3 - r l  and r4 - r l  are approximations of the covariant vectors a, = 
respectively, we can see that S' FZ a, x a3 and V z 

(al x a2).a3 from formulae ( I )  and (2). Since the volume element Jg and the contravariant 
vectors ai satisfy Jg = (al x a2) - a 3  and a' = (a, x a3)/ Jg respectively,'6 we have S' x Jga' 
and V x Jg. The volume element ,/g is the inverse of the Jacobian determinant. 

The geometric quantities at the positions described in Section 2.1 are calculated from known 
discrete points. For other locations the values for ei and V are computed by a second-order- 
accurate interpolation and the unit tangent vectors are calculated from ei by orthogonal relations 
ei e j  = 0 ( i  # j) instead from ei by averaging. 

a, = aria(, and a3 = 

2.3. Discretization 

The general transport equation for a dependent variable 4 is written as 

v - ( P u ~ )  - v - (rv4) + c = 0, (5 )  

where u, p and r are the velocity, density and diffusion coefficient respectively. The first term 
represents transport of 4 by convection and the second term represents transport by molecular 
diffusion. The last term C is a source term which generally depends on 4. This equation is the 
natural expression of the transport of 4 and takes different forms in various co-ordinate systems. 
The discretized equations were obtained by first integrating equation (5) over a control volume 
in the physical space and then deriving an algebraic approximation to this integral equation. 
Geometric quantities associated with the control volume are used directly to evaluate the fluxes 
on the control cell surfaces. 

Let J = pu4 - rV4 denote the total flux. Equation ( 5 )  can then be written as 

V. J + C = 0. 

Equation (6)  is integrated over a general control volume SV, as shown in Figure 2 in 
the physical space, and the divergence theorem is applied: 

1 j j V . J  do = i,, J - d S  z J-S'I, - J-S'I, + J-S21, - J-S21, + J.S31, - J.S31b. (7) 

(6) 

bY 

Next consider the transport of along the ci-co-ordinate direction: 

J.si = p411-s~ - rv&si = p@ - rv@si, 
where 

F' = u.Si ( i  = 1, 2, 3) 
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are the volume flow rates across the cell faces. By the definition of gradient, 

Applying the Gauss divergence theorem, we obtain 

(V4)P = CS'(4, - 4 w )  + S2(4" - 4s) + S3(4t - 4tI)lK (9) 

where c $ ~  - 4w, 4" - 4s and 4, - 4b are approximations of &p/a(,, and a4/aC3 
respectively, since A t i  = 1 in the transformed space. Hence the gradient of the dependent variable 
4 can be expressed as 

Substituting equation (10) into (8), we obtain the following expression for the transport of 4 :  

where 

si. SJ 
9'.' = ~ ~~ 

V ( i , j  = 1, 2, 3) 

is the surface area metric tensor. When the grid is orthogonal, 9'' = 0 for i # j ;  therefore the 
last term in (11) is the result of grid non-orthogonality. The total transport of 4 can be 
decomposed into an orthogonal component and a non-orthogonal component: 

where 

Substituting equation (12) into (7), the conservation equation over the control cell can be written 
as 

( J A  + JA)le - ( J &  + Jr?J)lw + ( J ;  + Jill" - ( J ;  + J i ) I s  + ( J A  + JA)lt - (Ji + G)Ib + vc = 0. 

(13) 

The orthogonal component J b  has the same form as for the Cartesian co-ordinate system. 
Therefore schemes such as the hybrid scheme or the power law scheme2 for regular geometries 
can be applied to these terms. The non-orthogonal components, however, cause some numerical 
difficulties. Ordinary discretization of the non-orthogonal terms, involving only the corner points, 
results in a 19-diagonal coefficient matrix which is not unconditionally diagonally dominant. 
This may result in numerical instability and unrealistic solutions. Direct solution methods are 
impractical for this 19-diagonal coefficient matrix.I4 Hence the common practice is to treat the 
non-orthogonal components of the equation explicitly, by combining them into the source term. 
This may cause serious deterioration in the convergence rate if these explicit components become 
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large. It is therefore necessary to investigate other treatments. In the present study a new 
numerical scheme is proposed to address this difficulty and is presented in the following 
subsection. 

2.4. Discretization of the non-orthogonal terms 

Referring to Figure 3, consider the approximation of one of the non-orthogonal terms, g12r 
d4/dC2, at the midpoint of the east surface. When the central difference scheme is used, there is 
no contribution to the main diagonal terms of the resulting coefficient matrix. Also, four 
additional corner points are involved, with at least two negative coefficients in the resulting 
discretization for the cross-derivative term (d /d( , ) (g '2  a4/dt2), making an implicit treatment 
difficult. The following alternative approximation was introduced to solve this problem: if 
gl2Ie I 0, then 

if gl2Ie > 0, then 

Different numerical schemes are chosen depending on the sign of the coefficient gI2, based on 
the preference for a positive contribution to the main diagonal term. The idea is similar to the 
upwind scheme for the convection terms, in which different expressions are employed for different 
signs of the velocity. In contrast with the one-side difference, this scheme is symmetrical around 
point 'e' and is second-order-accurate. This can be shown through the following order analysis. 

With reference to Figure 3, the following are obtained using Taylor expansions: 

4NE - 4E = - h + - -7 h2 + O(h3), 
a 5 2  " 1  E : G i E  

Combining the above expressions yields 

I c 

€ 1  

Figure 3. Illustration of discretization of cross-derivatives 
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we can write equation (16) as 

A similar estimate exists for approximation (15): 

+ O(h2). 
2h 

The above estimates show that the schemes (14) and (15) presented here are second-order- 
accurate. The other derivatives involved in the expressions for the non-orthogonal components 
can be treated similarly. This approach provides a second-order approximation for the non- 
orthogonal term (d/ati)(gij d # / d t j ) .  Also, using this method, the number of corner points used 
is reduced by half and the main diagonal term of the resulting coefficient matrix, ap,  is augmented 
by the amount 

2r(19121 + I9l3l + 19231). 

After treating the non-orthogonal diffusion as described above, the general governing equation 
can be discretized following the methods developed for standard Cartesian co-ordinates. In the 
present study the power law scheme2 is used for the orthogonal components. 

A general algebraic equation is obtained by substituting the discretized forms of the orthogonal 
and non-orthogonal components into equation (13). The resulting equation can be written as 

a P 4 P  = a E 4 E  + a W & V  + a N 4 N  + + a T 4 T  + + a n c 4 n c  + (21) 
nc 

where aE,  a,, etc. denote the combined convection-diffusion coefficients, including the non- 
orthogonal terms, the summation index nc represents the corner points from the discretization 
of non-orthogonal components of 4 (such as #WN and 4ws) and b includes only the source term C. 

3. CALCULATION OF THE FLOW FIELD 

The discretization of the momentum and continuity equations is presented in this section, along 
with an algebraic method for handling the curvature terms using the tangential velocity 
components as dependent unknowns. 

3.1. Dependent variables in the momentum equations 

Different sets of velocity unknowns may be chosen. A review of the various possibilities is 
given by Rodi et al.' In the present study the physical tangential velocity components are used 
as the dependent variables for the momentum equations. These variables, denoted as U", are 
the coefficients resulting from the velocity expansion in the unit tangent basis vectors e,: 
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An expansion in a two-dimensional tangential co-ordinate system is shown in Figure 4, where 
OAi = (S/ISI).u are the physical contravariant velocity components and Us' are the physical 
tangential velocity components. The tangential velocity components UCi are uniquely determined 
by equation (22) and have the following expressions:" 

From the above equation it  can be seen that the physical tangential velocity components are 
the volume flow rates U - S '  normalized by appropriate geometric quantities. The volume flow 
rates u - S '  were used as velocity unknowns by Rosenfeld et a/.' and are equivalent to the 
quantities JgU' .  As reported by Segal et a L 8  the use of the quantities JgU' as velocity unknowns 
provides a more accurate solution than the use of the contravariant velocities U'. 

The tangential velocity components are contravariant unknowns, equivalent to the quantities 
v/gU'/IS'I cos a,. Unlike the contravariant velocities U', the U5' have the same magnitude as the 
actual velocity. This facilitates implementation of the boundary conditions. 

Similarly to the use of the volume flow rates, the use of the tangential velocity components 
satisfies the velocity recovery requirement as described by Segal et a/.' In fact, from the 
calculations of geometric quantities described in Section 2.2 and formulae (22) and (23), it is 
easy to see that the transformation u + U c  + v gives exactly v = u if u is a constant vector. 
Computational tests also show that the use of the tangential velocity components as velocity 
unknowns provides satisfactory performance. 

3.2. Discretization of the momentum equations 

A staggered grid arrangement is adopted in which the pressure is located at the geometric 
centre of the control volume and the tangential velocity components UC,  lie at the midpoints of 
the respective control volume surfaces (see Figure 5). The use of the tangential velocity 
components as dependent variables gives rise to additional curvature terms, which can be 
expressed as Christoffel symbols using tensor notation. These terms can be discretized directly 
using e.g. central differencing.'.' 

A2 

Figure 4. Illustration of the velocity expansion in a 2D local tangential vector basis velocity components as dependent 
unknowns. 



458 P. HE AND M. SALCUDEAN 

Since these curvature terms involve second-order derivatives of the grid co-ordinates, they 
are difficult to discretize accurately when the grids become non-smooth. We avoid direct 
discretization of the curvature terms by an algebraic manipulation of the discretizations for the 
Cartesian velocity components. A similar approach was used in References 11 and 18, where the 
covariant velocities were used as dependent variables, with satisfactory results. This method 
seems more desirable for non-smooth grids, since the explicit discretization of second-order 
derivatives of the grid co-ordinates is avoided. 

In order to discretize the momentum equations, auxiliary discretizations for the Cartesian 
velocity components are considered. Suppose that all three Cartesian velocity components are 
located at the Us'-position. The governing equations for the Cartesian velocity components can 
be taken as special cases of the general governing equation (5). The discretization for the 
Cartesian velocity components can be obtained according to the method outlined in the previous 
section. Since the Cartesian velocity components are assumed to share the same control cell as 
Ue ' ,  their discretization equations will have identical coefficients. Therefore the discretizations 
can be written in vector form as 

where lowercase letters are used for the subscripts instead of uppercase to indicate that the U t '  
are located on cell faces instead of at cell centres. The source term be' contains only the pressure 
gradient term, which is discretized by the central difference scheme. The above discretization 
for the momentum equations is co-ordinate-invariant and independent of the choice of dependent 
variables. 

To find the discretization using the tangential velocity components as dependent variables, 
the velocity expansion in the local tangential vector basis at point 'p', {eilp}, is considered. 
Taking the inner product of vector e i  and vector equation (24) and applying formula (23), the 
following equation is obtained: 

where 

(26) = . be' (U;;)' = e: * u n b ,  (U:;)' = el p - u nc3 P '  

the index nb represents the six nearest neighbours of the node 'p', namely 'e' (east), 'w' (west), 
'n' (north), 's' (south), ' t '  (top) and 'b' (bottom), and the index nc represents the corner points 
as defined previously. The primed velocities (U;;)' and (Uf;;)' are velocity projections of 
neighbouring velocities over the vector el at point 'p'. The vector e' changes from point to 
point in the flow field and therefore the velocities (U:;)' generally differ from the actual 
neighbouring variables U:j,. Since the (Uih)' are not dependent variables, they must be replaced 
by U;;. This can be done by rearranging equation (25) as 

where 
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Equation (28) represents the curvature terms when the tangential velocity components are used 
as velocity unknowns. Using equations (23) and (26), equation (28) can be rewritten as 

The above equation shows that the curvature terms for U5' are produced by the change in vector 
el from point 'p'  to neighbouring points. 

For an actual computation the velocity u a t  neighbouring points is calculated from equation 
(22) and the curvature term b",' is then calculated from equation (29). For a staggered grid the 
velocity unknowns U5' and U5' are not defined at the Us'-position and some interpolation is 
needed for the calculation of velocities unb and uric. 

The discretization equations for the other two velocity unknowns can be derived in a similar 
manner. The resulting discretization for the momentum equations, with part of the pressure 
difference term written explicitly, can be expressed as 

where the superscripts indicate the different coefficients associated with different velocity 
components, the second summation on the right-hand side includes partial non-orthogonal 
terms, the third term on the right-hand side is a source term due to the curvature and the last 
term contains non-orthogonal pressure terms. 

3.3. Discretization of the continuity equation 

Integrating the continuity equation 

v - p u  = 0 (33) 

over a scalar control volume as shown in Figure 2 and applying the divergence theorem yields 

(pU . s'), - (pU ' s'),,, -k (PU. s2), - (pU ' s2), -k (PU * s3), - (PU ' s3)b  Z PU * dS = 0. (34) 

Substituti ig equation (23) into the above equation yields the discretization equation 

(cl u5')e - ( C I  U'l),,, + (c2 u"), - (C2 Ur2)S + (cj u"), - (cj U")b = 0, 

where 

ci = pls'l cos ai. 

(35) 

With this formulation the mass conservation equation is expressed exactly using the tangential 
velocity components without any extra source terms. 
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4. SOLUTION PROCEDURE 

The evaluation of the pressure field has always been a difficult issue in the primitive variable 
approach to incompressible flow, since the pressure is indirectly involved in the continuity 
equation. This difficulty becomes more acute when a curvilinear co-ordinate system is used, 
since the expressions for the pressure gradient and the continuity equation become much 
more complicated. In this section a block-implicit coupled equation solver is presented. 
This method was first used in Reference 19 to solve two-dimensional steady incompressible 
flow using a Cartesian co-ordinate system and was observed to provide good convergence 
rates. 

The pressure and velocities for a typical control volume are shown in Figure 5. The pressure 
located at the centre and the velocities located on the control volume surfaces are treated as 
the unknowns, while the pressure and velocities at all other points are treated explicitly. The 
momentum equations (30H32) provide the six algebraic equations for the six unknown velocities. 
These equations can be simplified by treating only two variables implicitly for each equation 
and written as 

a:',U$ - A $ P ,  = R,, 

a;I,Uf' + Af'P, = R,, 

(40) 

(41) 

where the R,  (i = 1, 2 , .  . . , 6 )  include all other terms left in the equations, calculated using the 
currently available values of the velocity and pressure at the neighbouring points. This approach 
is intended to provide a simple algebraic system which can be solved efficiently. The continuity 
equation (35) provides an additional algebraic equation, i.e. 

C J J : '  - C , J J ~  + C,."U? - C2.JJS52 + c3,,u:1 - C J J ?  = 0. (42) 

! / 

Figure 5 .  A general scalar control volume with seven unknowns 
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These equations are arranged in a block structure as 

The above block of equations is solved analytically by the Gauss elimination method. After 
sweeping the whole field, the coefficients at6, etc. are recalculated and the entire procedure is 
repeated until the residues become sufficiently small. 

5. COMPUTATIONAL EXAMPLES 

Four examples are presented in this section to demonstrate the capabilities of the proposed 
method using non-orthogonal grids in two- and three-dimensional geometries. All computations 
are carried out using the curvilinear co-ordinate-based programme CMGFD, which is based 
on the three-dimensional code MGFD." 

5.1. Cavity,flow with a moving lid 

The flow in a cavity with the top wall moving at a constant velocity Uw is considered. 
The side walls of the cavity are taken to be inclined, forming an angle with the horizontal 
plane. Three cases are computed with inclinations p = 60°, 45" and 30" at a Reynolds number 
Re = 100. Calculations were performed for various grid densities and Table I lists the con- 
vergence rates for each test calculation. The convergence criterion was a maximum residual 
of less than for each equation. The momentum residuals were normalized by pUi  
and the mass residual by pUW. The problem was studied by PeriCl3 using the Cartesian 
velocity unknowns in the momentum equations and a central difference scheme for the 
non-orthogonal terms. In contrast, the present method allows a wide range of underrelaxation 
factors with fast convergence for significantly non-orthogonal grids. Computational results 
using the finest grid, 80 x 80, are plotted in Figure 6. They show a strong main vortex 
driven by the lid movement and a sequence of weaker vortices in the sharp corner between the 
bottom plate and the upstream side wall. This second vortex system is the main difference 
between the square cavity and cavities with inclined walls. These results are very similar to those 
reported be Perik.13 

Table I .  Number of iterations necessary for convergence 
_ _ _ _ _ _ _ ~  

80 x 80 Grid 20 x 20 40 x 40 

lnclination p 60" 45" 30" 60" 45" 30" 60" 45" 30" 

Number of iterations 75 85 110 141 160 190 310 396 450 
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c) 
Figure 6. Streamlines for flow in cavities with inclined side wall: (a) ,!I = 60"; (b) = 45"; (c) /3 = 30" 

5.2. Laminarjow through a tube with a constriction 

As the second example, laminar flow through a tube with an axisymmetric constriction was 
considered. Such flows were studied experimentally by Young and Tsai.'l The general shape 
of the axisymmetric constriction was specified as a cosine curve 

-1- -cos  __ I - x o < x < x o ,  (;;J R _ -  

RO RO 
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as shown in Figure 7(a), where the length X ,  and height 6 of the constriction are parameters 
which can be varied for different flow situations. 

The present work investigates geometries corresponding to 'Model-2' of the experimental 
work.2' For this model the geometry is specified as 

R,  = 9.45 x m, 6/Ro = f ,  X,JRo = 4. 

The boundary conditions imposed were no slip on the wall, zero streamwise gradient at the 
outlet, fully developed parabolic flow at the inlet and symmetry conditions on the axis. An 
80 x 20 grid in the co-ordinates (x, r )  was used for the calculations (see Figure 7(a)). The density 
of the grid points was higher near the wall and the grid was stretched in the axial direction, 
with more grid points in the constricted region. Computations were carried out at Re = 50 and 
100, with the Reynolds number defined as 

Re = ZUR,/v, 

where 0 is the mean velocity of the inflow. The predicted flow field and streamlines for Re = 50 
are plotted in Figures 7(b) and 7(c) respectively. The flow pattern for Re = 100 is very similar, 
except for the size of the recirculation zone. 

n . Tube wall 
u u i u  

0 005 

0 000 
0.18 

O.O0 Axis symmetry 0.09 

Lwel phi 
7 2.2E-4 
6 l.6E-4 
5 1.OE-4 
4 4 x 4  

7 3 0.oH) 
2 -2.1E.5 
1 -4.2E.5 

Figure 7. Flow through tube with constriction: (a) geometry and grid; (b) velocity field; (c) streamlines 



464 P. H E  AND M. SALCUDEAN 

The predicted separation and reattachment lengths together with experimental results from 
Reference 21 are presented in Table 11. Excellent agreement is seen between the present 
computations and the experimental results. 

5.3. Developing laminar flow in a pipe 

For the third computational example, laminar flow through a pipe was considered. This flow 
can be considered to be two-dimensional because of axisymmetry. However, the use of a 
non-orthogonal grid in the present calculation makes the problem appear fully three-dimensional 
(see Figure 8(a)). This problem was chosen because the available analytical solution makes it 
possible to test the accuracy of the proposed method. 

The 16 x 50 mesh illustrated in Figure 8(a) was generated by solving an elliptic grid 
generation system. The three-dimensional incompressible Navier-Stokes equations were 
solved with a no-slip condition at the wall, a uniform velocity profile (w = 1) at the inlet 
and zero streamwise gradient at the outlet. The pipe length was chosen as 12 times the 
diameter (D) for the computations and the Reynolds number was Re,  = 100. Using the 
same convergence criterion as in the previous problem, a solution was obtained after 480 
iterations. Figure 8(b) shows the velocity vectors in the symmetry plane. Figure 8(c) shows 
the calculated velocity contour in a cross-plane located 10 diameters downstream ( x / D  = 10). 
Figure 8(d) compares the calculated solution in the well-developed region ( x / D  = 10) with 
the analytical solution u(r) = 2(1 - r)'. Figure 8(e) compares the maximum velocity in the 
developing region with the results from Reference 22. It should be noted that the numerical 
solutions were obtained with the elliptic governing differential equations whereas the analytical 
solutions were for the parabolic forms of these equations. The results show good agreement 
between the analytical and numerical solutions. 

5.4. Flow in a pipe with a smooth 90" bend 

For this example, laminar flow in a pipe with a smooth 90" bend was considered. This is a 
strongly three-dimensional flow where the main flow in the streamwise direction along the pipe 
is influenced by strong secondary currents in the pipe cross-section arising from the centrifugal 
forces due to the bend curvature. This flow was studied experimentally by Enayet et The 
same geometry as used in the experimental study was adopted for the present computation. The 
geometry and grid are illustrated in Figure 9. Owing to symmetry, the computational domain 
has been limited to half the pipe only. A 32 x 32 x 64 mesh was used in the computations, 
which were carried out at Re = p U , D / p  = 500, corresponding to the experiment, where U ,  

Table 11. Comparison with experimental results and number of iterations for calculation 

80 x 20 Separation point Reattachment point 

Re Number of iterations Experiment Prediction Experiment Prediction 

50 210 0.33 0.32 2.28 2.21 
100 24 1 0.34 0.33 4.19 4.10 
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e) 
Figure 8. (a) Illustration of grid and velocity; (b) development of velocity profile; (c) velocity contour in cross-pipe plane 
at x = 1OD; (d) comparison with analytic solution at x = IOD; (e) comparison of flow in developing region, where 

UIUb = UrnlJ~;b"lk 

is the bulk velocity at the entrance. The convergence criterion was the same as that used in the 
first example, with convergence being satisfied after 620 iterations. Figure 10 shows the calculated 
velocity vectors in the plane of symmetry. The predicted velocities at four cross-stream locations 
in the plane of symmetry together with the measured resultsz3 are plotted in Figure 11, where 
reasonable agreement can be seen. 
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Grid at Symmetry Plane Grid at Cross Section 

Figure 9. Grid and flow geometry for pipe with smooth 90" bend 

Grid at SymmetyPlane- Grid at Cross Section 

Figure 9. Grid and flow geometry for pipe with smooth 90" bend 

Figure 10. Velocity vectors on symmetry plane 
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- comp 

a) $=30 b) 8 4 0  

- comp 

c) $=75 d) h=D 
Figure 11. Comparison with experimental results 

6. CONCLUSIONS 

A numerical method for computing fluid flow in complex three-dimensional domains has been 
presented. Computational examples show that the proposed method can be used to solve flow 
problems in complex three-dimensional geometries using significantly non-orthogonal and 
moderately non-smooth grids. A new scheme for handling the non-orthogonal terms is proposed 
which is useful when the grid is significantly non-orthogonal. 

Efforts have been made to allow for the use of moderately non-smooth grids by directly 
employing the geometric quantities of control cells and avoiding explicit discretization of the 
derivatives of the grid co-ordinates. However, the use of highly non-smooth grids should be 
avoided in order to obtain a reasonably accurate solution. Convergence difficulties may occur 
if the grids change direction rapidly from point to point. The method for dealing with the 
curvature terms needs to be investigated further to allow for highly non-smooth grids. 

The proposed method has been implemented with a block multigrid method and further work 
will include implementation of a turbulence model. 
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APPENDIX: NOMENCLATURE 

ai, a‘ 
anb, etc. 
ei 
e’ 
Fi 
9 i j  

J 
P 
Si 

U‘ 
U“ 
V 

U 

covariant, contravariant vectors 
discretization coefficients 
unit tangent vectors (Figure 1) 
rescaled surface area vectors 
volume flow rates across cell faces 
surface area metric tensor 
flow flux 
pressure 
surface area vectors (Figure 1) 
velocity vector 
contravariant velocities 
tangential velocity components 
volume of control cells 

Greek letters 

ai non-orthogonal angles, (Figure 1) 
r general diffusivity coefficient 
ti curvilinear co-ordinates 
P density of fluid 
4 general dependent variable 

Subscripts 

e, w, . . . 
E, W, . . . 

pertaining to faces of control cells 
pertaining to main cell centres 

Superscript 

ti coefficients associated with discretization for Uci 
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